skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Belbruno, Edward"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT A resultant gravitational force due to the current estimates of the virial mass of the Milky Way galaxy, dominated by dark matter, is estimated near the Sun and is described in two different analytical models yielding consistent results. One is a two step Hernquist model, the other is a Navarro–Frenk–White model. The effect of this force is estimated on trajectories for spacecraft sufficiently far from the Sun. The difficulty of detecting this force is studied. It is concluded that its effect should be considered for certain spacecraft missions. Its effect on the Pioneer and New Horizons spacecrafts is discussed. A future mission is discussed that may be able to detect this force. Implications of this force are discussed with its impact for problems in planetary astronomy and astrophysics. 
    more » « less
  2. Abstract It is shown that a class of approximate resonance solutions in the three-body problem under the Newtonian gravitational force are equivalent to quantized solutions of a modified Schrödinger equation for a wide range of masses that transition between energy states. In the macroscopic scale, the resonance solutions are shown to transition from one resonance type to another through weak capture at one of the bodies, while in the Schrödinger equation, one obtains quantized wave solutions transitioning between different energies. The resonance transition dynamics provides a classical model of a particle moving between different energy states in the Schrödinger equation. This methodology provides a connection between celestial and quantum mechanics. 
    more » « less
  3. In this paper, we study the limit behavior of a family of chords on compact energy hypersurfaces of a family of Hamiltonians. Under the assumption that the energy hypersurfaces are all of contact type, we give results on the Omega limit set of this family of chords. Roughly speaking, such a family must either end in a degeneracy, in which case it joins another family, or can be continued. This gives a Floer theoretic explanation of the behavior of certain families of symmetric periodic orbits in many well-known problems, including the restricted three-body problem. 
    more » « less